Stephen Wolfram Q&A
Submit a questionSome collected questions and answers by Stephen Wolfram
Questions may be edited for brevity; see links for full questions.
November 3, 2011
From: Interview by Mark Jannot, Popular Science
Is it possible for nature, writ large—for the universe itself—to ever do anything that is anything other than incremental?
Yes! When you look at different things that happen in different physical systems, you can ask, is it the same case in the way that fluid flow works in this situation versus that situation? They may not be connected. There’s no requirement that the fluid flow be—from one situation to another, that it change its behavior only a little. If it was evolving under natural selection, it probably would be a requirement that it only change its behavior a little. Evolution doesn’t tend to make these random steps that are absolutely dramatic. But the thing about a lot of nature is that there’s no constraint that anybody should be able to understand what these things do. Sometimes we get confused because our efforts at doing science have caused us to concentrate on cases where we can understand what’s going on, and that means we come to think, gosh, it’s all set up to be understandable. But that’s not true at all. It’s just that we selected the cases that we studied to be those ones. And I think that what tends to happen in nature is that there’s a certain amount of incomprehensible stuff that’s going on where we can look at the underlying components, we can understand those, and then there’s some computationally irreducible process that is what happens when those components actually run and do what they do. And in technology, a lot of what we do is we go out into the natural world and we find components that we can harness for technology. We find donkeys that we can ride on or something, or we find liquid crystals that we can use for displays, or we find other things out there in nature that we can harness for some useful human purpose.
And one of the things that I know we certainly do a lot of is going out into this computational universe of possible algorithms, in a sense, the computational universe of all possible universes because that’s—our universe operates according to some particular algorithm, but we can readily just go out at a theoretical level and just say, What are all the possible algorithms, what are all the possible universes that exist? And in fact, we can go and look at all those possible algorithms and say, Which ones are doing something that will be useful for some human purpose? And when we find one that’s useful for some human purpose, we can implement it on our computer and maybe one day implement it in some molecule, and then it runs and does something that’s useful for our human purposes. But one of the things that’s important about that methodology—just going out and finding it in the computational universe—is that the thing we find is under no constraint to be comprehensible in its operation to us. When we do engineering, we do things incrementally, and usually it’s the typical party-trick-type thing where you’re shown two objects: one’s an artifact; one’s something that came from nature in some way. A very good heuristic is that the one that looks simpler is the one that humans made. Because most of the technology we build, it’s very repeated motifs of circles and lines and things like this, and it’s built to be comprehensible. I suspect that we’re in the late years of when that will be possible. Increasingly when you look at technological objects, they’ll be things that effectively were found in the computational universe, and they do something really useful. They’re not things that were constructed incrementally in a way that’s readily comprehensible to us, where their operation is readily comprehensible to us.